
Analytic Hierarchy Process 

1. Introduction 

 The Analytic Hierarchy process was first created by Thomas Saaty in 1977. The model was 

designed to use pairwise comparisons, between both the options and the criteria used in the model, to 

create a model that could determine the optimal solution to a decision. The Ideal Analytic Hierarchy 

Process, a revised version of the Analytic Hierarchy Process, is what will be used in this model. While 

there are many different multi-criteria decision-making models that can be used, the Ideal Hierarchy 

Process is the least likely to give you an incorrect optimal solution. 

2. User Input 

 In order to run the model, we will first need the user to input the number of parameters in the 

trade study (m) as well as the number of different options (n) that they are evaluating in the trade study. 

Next the user will have to input the names of the variables in descending importance (i.e. most 

important first). Once, the user has entered the names of the variables, the user will have to enter in the 

names of the options (in any order). The user will then have to enter the preferences for the parameters 

(1 if a higher score in the parameter is better, 0 if a lower score in the parameter is better). 

 The next item that the user will have to enter is a series of pairwise comparisons between two 

different parameters. The user will use the chart below to determine the scores that should be entered 

into each of the pairwise comparisons (Figure 1). 

Scale for Pairwise Comparison  

Intensity of Importance Definition 

1/3 The second parameter is favored very 
strongly over the first parameter 

1/2 The second parameter is favored strongly 
over the first parameter 

2/3 The second parameter is favored moderately 
more than the first parameter 

1 The first and second parameter are favored 
equally 

3/2 The first parameter is favored moderately 
more than the second parameter 

2 The first parameter is favored strongly over 
the second parameter 

3 The first parameter is favored very strongly 
over the second parameter 

 

 Lastly, the user will have to enter in a matrix of raw data, R[m][n], that is formatted in the same 

way as the diagram below (Figure 2). 

For example, parameters m = 5, options n = 3 
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3. Theory and Application 

3.1 Parameter Weighting Matrix, P[m][m] 

 

 

 

1 𝒑𝟏𝟐 𝒑𝟏𝟑 𝒑𝟏𝟒 𝒑𝟏𝟓 

𝒑𝟐𝟏 1 𝒑𝟐𝟑 𝒑𝟐𝟒 𝒑𝟐𝟓 

𝒑𝟑𝟏 𝒑𝟑𝟐 1 𝒑𝟑𝟒 𝒑𝟑𝟓 

𝒑𝟒1 𝒑𝟒2 𝒑𝟒3 1 𝒑𝟒𝟓 

𝒑𝟓1 𝒑𝟓2 𝒑𝟓3 𝒑𝟓4 1 

 

 The parameter weighting matrix (𝑷[𝒎][𝒎]), used to find the weights of the parameters, consist 

of a series of pairwise comparisons between parameters with respect to importance. There are some 

key properties that must exist within the matrix. The first property that must be noted is that the 

diagonal elements are all 1. This is due to the fact that those cells represent a pairwise comparison 

between the same parameters, so they should always equal 1. The next property that we must know is 

that 𝑝𝑖𝑗 = 
1

𝑝𝑖𝑗
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 < 𝑚. Thus traditionally, when using the Ideal Analytic Hierarchy Process, the 

user would have to input all of the pairwise comparisons for the blue and green cells (Figure 3) by using 

Saaty’s scale. However, when dealing with a relatively large amount of parameters, achieving 

consistency is almost impossible. Inconsistency occurs when you have a contradiction in the relative 

importance of a parameter or option. An example of inconsistency would be saying that  𝑝14 > 𝑝15  and 

𝑝15 > 𝑝12 , but 𝑝12 > 𝑝14. To deal with this problem, we will employ a new method of entering the 

pairwise comparisons.  

 To help understand how to get a consistent matrix, we will create bijective mapping from 

Saaty’s Scale (Figure 4) to a new scale (Figure 5). 

  

New Scale for Pairwise Comparison  

Intensity of 
Importance 

Definition 

1 Equal Importance 

3 One element is 3 times as important as 
another element 

5 One element is 5 times as important as 
another element 

7 One element is 7 times as important as 
another element 

9 One element is 9 times as important as 
another element 
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 The mapping ( 𝑓: 𝑋 → 𝑌) can be visualized by the diagram below (Figure 6) (Note that only a few 

of the elements will be mapped and that the mapping could be different due to the subjectivity of 

Saaty’s scale). 

 

 

 

 

 

 

 

 

Since 𝑓 is bijective, we can also note that the inverse function of 𝑓 exists and is well defined. 

We will now consider a 4x4 matrix that is made according to the new scale. 
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We can get the following set of equalities by applying the definition of the scales (Elements have 

parenthesis around them). 

(1) = 𝑎(2) (1) = 𝑑(3) (1) = 𝑓(4) (2) = 𝑏(3) (2) = 𝑒(4) (3) = 𝑐(4) 

We can use the above equalities to create a new equality. 

(1) = 𝑎(2) ⇒ (1) = 𝑎𝑏(3) ⇒ (1) = 𝑎𝑏𝑐(4) 

Similarly:               (1) = 𝑎𝑒(4) 

                                                    (1) = 𝑑𝑐(4) 

                                                                                                              (1) = 𝑓(4) 

We can see that in order for the matrix to be consistent, the following must be true: 𝑏𝑐 = 𝑒, 𝑑𝑐 = 𝑓, 

and 𝑑 = 𝑎𝑏.  

Thus, in order for our matrix to be consistent we must have: 
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We can now transform our matrix using the inverse of the function 𝑓: 

[
 
 
 
 
 
 
 

  

1 𝑓−1(𝑎) 𝑓−1(𝑎𝑏) 𝑓−1(𝑎𝑏𝑐)

(
1
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Using the antidistributive property, we get: 
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Thus, it is evident that in order to achieve consistency in Saaty’s scale, the matrix must look like the one 

above. 

Since it is almost impossible for a user to achieve consistency or near consistency, especially in 

large matrices, it may be beneficial to prompt the user for the highlighted values in the matrix above. In 

order to keep the elements of the matrix somewhat bounded, we must also restrict the user to using 

values from 1/3 to 3 (figure 1). A user may enter a higher (or lower) value vary rarely if desired, 

however, it may cause an unintentional trivial situation (i.e. one parameter has almost all the weight). It 

is also suggested that the user ranks the parameters in order of importance before they start. This will 

get rid of a situation where the user has to compare the most important parameter to the least 

important parameter and is forced to only put a 3, even though the number should be higher. 

 Now that we have a consistent weighting matrix, we can create the weights. We will first take 

the geometric mean of the rows of the weighting matrix (Figure 3). The geometric mean for  

𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑚 would be √𝑝𝑖1 × 𝑝𝑖2 × ⋯× 𝑝𝑖𝑚
𝑚  . We will then standardize each geometric mean by 

dividing by the sum of the geometric means. For example if you had geometric means 𝑔1, 𝑔2, … , 𝑔𝑚 , 

then the standardized mean of 𝑔1 would be 
𝑔1

𝑔1+𝑔2+⋯+𝑔𝑚
 , which would give us 𝑤1. Thus, we will end up 

with our parameters weighting vector  𝒘 = [

 𝑤1

⋮
𝑤𝑚

].  



3.2 Consistency 

 As stated earlier, inconsistency occurs when the user inputs values into the weighting matrix (or 

option matrices). A Matrix that is perfectly consistent will always have a Consistency Index (CI) = 0. If the 

matrix has too much inconsistency the model will not run correctly, and the user is more likely to get an 

“optimal” solution that is not the true optimal solution. To determine how much inconsistency is 

acceptable, we will compare the CI to the Random Index (RI) (Figure 7). It was determined by Saaty, that 

if  
𝐶𝐼

𝑅𝐼
> 0.10 then the matrix will require further analysis and should probably be reconstructed to create 

a more consistent matrix.  

m 2 3 4 5 6 7 8 9 10 

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

 

 To calculate the CI for a matrix, we must estimate 𝜆𝑚𝑎𝑥, the maximum eigenvalue. To estimate 

𝜆𝑚𝑎𝑥 (for the weighting matrix) we must multiply 𝑃 (weighting matrix) by 𝒘 (weighting vector) . Let 

𝑷(𝑚×𝑚) × 𝒘(𝑚×1) = 𝒗(𝑚×1). We can then approximate 𝜆𝑚𝑎𝑥 with 𝜆̂𝑖
𝑚𝑎𝑥

 = 
𝒗𝑖

𝒘𝑖
. Our final approximate of 

𝜆𝑚𝑎𝑥, 𝜆̂𝑚𝑎𝑥, will be the arithmetic mean (average) of 𝜆̂𝑖
𝑚𝑎𝑥

 𝑓𝑜𝑟 𝑖 = 1,… ,𝑚. Thus we can approximate 

CI by CÎ = 
(𝜆̂𝑚𝑎𝑥−𝑚)

𝑚−1
. However, since we use a revised method of inputting the pairwise comparisons, we 

will not have to worry about inconsistency in the weighting matrix (yet the ratio will still be calculated to 

catch any errors). 

3.3 Option Weight Matrices, O[n][n][m] 

 

 

 

 

 

 

 

 

 Similarly to the weighting matrix, the option matrices (𝑶(𝒌)) are a set of matrices that consist of 

pairwise comparisons. There will be m matrices where each matrix will be 𝑛 × 𝑛 in size. Figure 8 (above) 

illustrates one of the matrices. In this matrix, 𝑏12 represents the comparison of option 1 to option 2 with 

respect to the 𝑘𝑡ℎ parameter. We will use Saaty’s scale in order to determine the value that corresponds 

to that pairwise comparison. However, consider a trade study with 10 parameters and 10 different 

options. The user would have to fill out 10 different matrices, and the matrices would probably not be 

consistent. Since we have the raw data for each of the options, we will explore a method which will use 

the raw data to create all the matrices.  

1 𝒐𝟏𝟐 𝒐𝟏𝟑 

𝒐𝟐𝟏 1 𝒐𝟐𝟑 

𝒐𝟑𝟏 𝒐𝟑𝟐 1 

𝒓𝒌𝟏 𝒓𝒌𝟐 𝒓𝒌𝟑 

𝒓𝒌𝟏 𝒓𝒌𝟐 𝒓𝒌𝟑 

𝒓𝒌𝟏 𝒓𝒌𝟐 𝒓𝒌𝟑 

Figure 7 
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Raw Data With respect 

to parameter 𝑘 



 In order to create a good model,  𝑶(𝒌) should have 𝑏𝑖𝑗 that vary greatly. The greater variation 

will help distinguish the utility scores between the different options. At the same time, we want to try 

and bound the scores between 
1

9
 and 9. One proposed way to do this was to take the range (user 

specified) and to divide the range into 17 sections (one for each integer or fraction) and then assign 
scores based off of where the options fall. The major downfall is that the scores will be most likely 
evenly distributed, which would not be ideal. When ranking things against one another, most options 
will be similar in performance, so they should have a higher probability of being closer to 1 and a 

relatively low probability of being 
1

9
  or 9. Thus if we normalize the option scores, we will find that most 

of the scores will be close to 1, however, that does not stop an option from being a 8 or 9.The premise 
of this idea comes from Chebyshev’s inequality. 

 Chebyshev’s inequality states that for any distribution where the mean and the variance are 
defined, we are guaranteed that the following percent of observations fall within n standard deviations 
of the mean: 

n percentage 

2 75% 

3 88.9% 

4 93.75% 

5 96% 

6 97.22% 

10 99% 

 

Let a higher score in a parameter be preferable to a lower score (Preference = 1). 

Consider 𝑜𝑖𝑗 = {
1 + ( 

𝑟𝑖𝑖−𝑟𝑖𝑗

𝜎
)  𝑖𝑓 𝑟𝑖𝑖 ≥ 𝑟𝑖𝑗 

1

1+ (
𝑟𝑖𝑗−𝑟𝑖𝑖

𝜎
)
 𝑖𝑓  𝑟𝑖𝑖 < 𝑟𝑖𝑗

. 

This ensure that the majority of the 𝑜𝑖𝑗’s are close to one, however it gives more weight when 

there are distinct differences between the two raw data points. The advantage to this method is that it 
does not matter what size of a scale you are working with, because the standard deviation will change 
between small scales and large scales. While it is unlikely, if 𝑜𝑖𝑗 > 9 the model will still run, however it 

will give more weight than what is intended to that pairwise comparison of options. This method also 
helped create consistency in the option matrices, so we do not have to worry about consistency in the 
option matrices.  

If a lower score is preferable when compared to a higher score (Preference = 0), 

Consider 𝑜𝑖𝑗 = {
1 + ( 

𝑟𝑖𝑗−𝑟𝑖𝑖

𝜎
)  𝑖𝑓 𝑟𝑖𝑖 ≤ 𝑟𝑖𝑗 

1

1+ (
𝑟𝑖𝑖−𝑟𝑖𝑗

𝜎
)
 𝑖𝑓  𝑟𝑖𝑖 > 𝑟𝑖𝑗

. 

If a median score in preferable for parameter i, say s, it is recommended that you replace the raw data 

with |𝑟𝑖𝑗 − 𝑠|, and then use the preference = 0. 



 Now, we have consistent option matrices that are ready to be used in the model. Similarly to the 

weight matrix, we will take the geometric mean of each row and standardize them. Thus for 𝑶(𝒌) we will 

get a vector say 𝒔(𝑙) = [

 𝑠1𝑙

⋮
𝑠𝑛𝑙

]. Thus we will create a new matrix, 𝑺(𝑛×𝑚), from our vectors 

𝒔(1), 𝒔(2), … 𝒔(𝑚), such that 𝑺 = [𝒔(1) ⋮ 𝒔(2) ⋮  …  ⋮ 𝒔(𝑚)]. Since we are using the Ideal Analytic Process 

instead of the original model, we will take the max 𝑠𝑗𝑙 in each column, and divided each other entry in 

that column by the maximum entry. Thus one column may look like 𝒔(𝑙) = 

[
 
 
 
 𝑠1𝑙

𝑠𝑗𝑙

⋮
𝑠𝑛𝑙

𝑠𝑗𝑙 ]
 
 
 
  (If 𝑠𝑗𝑙 is the maximum 

value in that column). We will call this standardized new matrix 𝑺∗. We will also check each of the option 

matrices consistency in a similar fashion as the weighting matrix. The diagram below (Figure 9) shows a 

visual representation of what is happening throughout this section. 
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Standardized Geometric Mean 

Figure 9 



3.4 Finding the Utility Score, S[n][1] 

 Thus far, we have computed the weighting vector, 𝒘, and have constructed 𝑺∗ from the option 

matrices. Lastly to find the Utility Scores for each of the options, we will multiply 𝑺∗ × 𝒘. Therefore we 

will have a new vector of size 𝑛. We will call this vector 𝒚. Next we will normalize 𝒚 by diving by the sum 

of the elements, and get our new vector, say 𝑆. The first entry will correspond to the first option and will 

continue in the order that the options have been inputted into the model. We must note that these 

scores are relative, and that they add up to 1. Thus if you add a new option, the average will go down, 

making it seem like the options got worse, when in fact that is not the case. Thus once the scores are 

computed, the optimal option will be the one with the highest score. 

3.5 Sensitivity 

 Sensitivity is an important aspect of this analysis, and will be calculated after the utility scores 

have been calculated. Since the scores are computed off of raw data, and they are in a way out of our 

control, sensitivity analysis on the option matrices are not crucial. Instead we will perform sensitivity 

analysis on the weights for the parameters. The sensitivity analysis will tell you what the percent change 

would have to be in the weighting of parameters in order for another option to become the optimal 

solution. The following is an example of computing the sensitivity of option 1 (the current optimal 

solution) vs option 2, with respect to parameter 1. 

We can set up an equation to solve for the needed weight: 

(𝒚 (1) − 𝒚(2)) − 𝒘(1)(𝑺(1,1) − 𝑺(1,2)) = ℎ((𝑺(1,1) − 𝑺(1,2)) where ℎ is the new weight for 𝒘(1) 

Once we solve for ℎ, we can find the percent change of the weight: 

ℎ − 𝒘(1)

𝒘(1)
× 100 

We can conclude that if all are large percent change of the weight needed for one option to become the 

optimal option, that the optimal solution is relatively stable. In other words, if you change the relative 

importance of the parameters by a little bit, you will still have the same optimal solution. On the other 

hand, if the percent change is relatively small, then further analysis must be done between the two 

options.  

The format of the sensitivity analysis will be as followed:  

Assume option 1 (𝑂1) is the optimal solution. 

% % % % % 

% % % % % 

% % % % % 

% % % % % 

𝑂1 − 𝑂2 

𝑂1 − 𝑂3 

𝑂1 − 𝑂4 

𝑂1 − 𝑂5 



4. Numerical Example 

 For this Numerical Example, we will be using the data from PBW_Access_Trade_Fs_TRB_8-9-16. 

Unlike the analysis before, we will be using Cost and Risk as parameters in the study. We will say that 

Risk and Cost will be equally important, Cost will be favored strongly over Equipment Accessibility, 

Equipment Accessibility is favored moderately more than Flexibility/ Adaptability, Flexibility/ 

Adaptability is equally as important as Compliance with R&R Time Requirements, Compliance with R&R 

Time Requirements is favored moderately more than Modular Manufacturing /Integration, and Modular 

Manufacturing /Integration is favored moderately more than Ease of In-Silo Maintenance. Thus we fill in 

the weighting matrix 𝑷 as followed (Note: the tan boxes will be calculated): 

1 1 2 3 3 4.5 6.75 

1 1 2 3 3 4.5 6.75 

.5 .5 1 1.5 1.5 2.25 3.375 

.333 .333 .667 1 1 1.5 2.25 

.333 .333 .667 1 1 1.5 2.25 

.222 .222 .444 .667 .667 1 1.5 

.148 .148 .296 .444 .444 .667 1 

 

Thus we get a weighting vector that looks like the following: 

.2827 

.2827 

.1414 

.0942 

.0942 

.0628 

.0419 

Next we will approximate the eigenvalue: 

(1 × .2827) + (1 × .2827) + (2 × .1414) + (3 × .0942) + (3 × .0942) + (4.5 × .0628) +

(6.75 × .0419) = 1.9789,             
1.9789

.2827
= 7 → 𝜆̂1

𝑚𝑎𝑥
= 7    

Figure 3 



We will do this for the rest of the rows of 𝑃 and get 𝜆̂𝑚𝑎𝑥 = 7. 

Thus  CÎ = 
(7−7)

7−1
= 0. Since M = 7, RI = 1.32. Therefore 

𝐶𝐼

𝑅𝐼
= 0, so the matrix is perfectly consistent. 

Next we will move on to the Option Matrices. 

Our Raw Data looks like: 

1 1 1 2 2 2 

10800 78500 19700 0 600 19400 

9 6 6 6 6 9 

8 2 6 8 8 8 

8 1 8 6 1 8 

8 8 6 8 8 8 

6 6 6 4 4 8 

 

We will note that since we want a low cost and low risk, our preference vector will be: 

[ 0 0 1 1 1 1 1] 

Using the first row (highlighted green), we can get the option matrix with respect to the parameter Risk: 

1 1 1 2.8257 2.8257 2.8257 

1 1 1 2.8257 2.8257 2.8257 

1 1 1 2.8257 2.8257 2.8257 

.3539 .3539 .3539 1 1 1 

.3539 .3539 .3539 1 1 1 

.3539 .3539 .3539 1 1 1 

 

Taking the standardized geometric means of the rows, we get: 

1.6810 

1.6810 

1.6810 

.5949 



.5949 

.5949 

We can do that for all 7 matrices and come up with 𝑺 

1.680994 1.202992 2.050623 1.360745 1.562122 1.229209 1.151269 

1.680994 0.367196 0.698324 0.370342 0.49457 1.229209 1.151269 

1.680994 0.968561 0.698324 0.787573 1.562122 0.356345 1.151269 

0.594886 1.558879 0.698324 1.360745 1.072505 1.229209 0.527981 

0.594886 1.536671 0.698324 1.360745 0.49457 1.229209 0.527981 

0.594886 0.975707 2.050623 1.360745 1.562122 1.229209 2.350894 

 

We can determine 𝑺∗by dividing all the elements in the column by the largest element of that column: 

 

 

 

 

 

Similarly to the parameter matrix, we will check all of the option matrices consistency. In this case, all 

the matrices are consistent. 

Next we will find our Utility Scores by multiplying 𝑺∗by 𝒘  to get:  

 

 

 

 

 

 

 

 

 

Thus we can see that 2nd Diving Board; Two-Side Access is our optimal option. We can notice that when 

we add in parameters such as cost and risk that the optimal option becomes a lot clearer and there 

exists more separation. In the excel file, the sixth option was actually better than the first option, 

whereas when cost and risk are accounted for, we can see that the first option is clearly superior. 

1 0.771703 1 1 1 1 0.489716 

1 0.235551 0.340542 0.272161 0.316601 1 0.489716 

1 0.621319 0.340542 0.57878 1 0.289898 0.489716 

0.353889 1 0.340542 1 0.68657 1 0.224587 

0.353889 0.985754 0.340542 1 0.316601 1 0.224587 

0.353889 0.625903 1 1 1 1 1 

0.220726 

0.129498 

0.16759 

0.159877 

0.150485 

0.171823 



We will now look at the stability matrix: 

Inf -249.238 -405.271 -550.792 -586.61 Inf Inf 

Inf -517.553 -236.049 -554.333 Inf -493.231 Inf 

-137.948 390.4123 -270.312 Inf -853.106 Inf -2269.19 

-159.24 480.6659 -312.034 Inf -451.655 Inf -2619.43 

-110.865 -491.298 Inf Inf Inf Inf 947.5332 

 

We can see that smallest percentage is -110.865. However, that would mean the parameter weight would 

have to be negative, which is not allowed in this model. Note that these are the percentages needed if 

you were to only change the weight on one parameter. Thus if you change the weight on numerous 

parameters, these confidence Thus we can say that this outcome is stable and you could change the 

weights slightly and still come out with the same optimal answer. 


